Year 11-12 Bridging the Gap GCSE \rightarrow A Level

A Level Mathematics

\&

A Level Further Mathematics

USF \& Maths FAQs

1. What equipment will I need for A-Level Maths and Further Maths?
a. To start with, just bring your usual pencil case contents and GCSE calculator. You will need to get an A-Level calculator, but there is a choice between two models, and we can explain the difference between these models during a lesson in September.
2. Do I need to buy any text books?
a. No. Text books will be provided in exchange for a returnable deposit. We use a lot of online resources too.
3. What happens if I don't get the GCSE grades I was hoping for?
a. Please talk to us! We can discuss your specific situation with you and will collaboratively establish whether maths / further maths are still appropriate options for you.
4. Will I have a lot of homework?
a. It depends! Successful mathematicians practise maths until they understand new skills and relevant knowledge thoroughly. Your homework will be reasonably consistent each week, but you will also be expected to do additional independent practice to ensure that you are really confident with each new topic. You might need to do more practice with certain topics compared to others.
5. How can I get help between lessons?
a. There are several specialist A-Level maths teachers who will be happy to help you, even if they don't teach you, and we will give you their details in September. We will also give you a list of resources that you can use to help revisit topics independently.
6. I am unsure about something to do with A-Level maths or further maths at USF. How can I ask a question before September?
a. Mrs Taylor can be contacted via email anytime: mandy.taylor@avonbourneacademy.org.uk

Course Breakdown for Mathematics

Area of Maths	Exams	Total Marks
Pure Maths: - Proof - Algebra and functions - Coordinate geometry - Sequences and Series - Trigonometry - Exponentials and Logarithms - Differentiation - Integration - Numerical Methods - Vectors	Paper 1: 2 hours Paper 2: 2 hours	100 marks for each paper
Statistics: - Statistical Sampling - Data presentation and Interpretation - Probability - Statistical Distributions - Statistical Hypothesis Testing	Paper 3: 2 hours	100 marks
Mechanics: - Quantities and units - Kinematics - Forces and Newtons Laws - Moments		

Course Breakdown for Further Mathematics

Area of Maths	Exams	Total Marks
Core Pure Maths: - Complex Numbers - Matrices - Polar coordinates - Hyperbolic functions - Differential equations - Extensions to A-Level pure content.	Paper 1: 1 hour 30 minutes Paper 2: 1 hour 30 minutes	75 marks for each paper
One or two options are chosen from: - Decision Maths - involving optimisation algorithms - Mechanics - including circular motion - Pure - including number theory and groups - Statistics - including Poisson and geometrical distributions	Paper 3: 1 hour 30 minutes Paper 4: 1 hour 30 minutes	75 marks for each paper

United Sixth Form
The best in everyone ${ }^{\text {Tw }}$
Part of United Learning

Recommended Reading

Acheson, D. 2020. The Wonder Book of Geometry. A Mathematical Story. OUP Oxford.
Head Start to A-Level Maths: Bridging the gap between GCSE and A-Level

Adventures in
Numberland Dispaticber from the Wonderfa
Werld of Mathematict

mul heor youre
2

ALEX BELLOS

Bellos, A. 2020. Alex's Adventures in Numberland. Dispatches from the Wonderful World of Mathematics. Bloomsbury Publishing.

Why do

 Buses Come in Threes?Eastaway, R. 2020. Why do buses come in threes? The hidden maths of everyday life. Harper Collins

Eastaway, R. \& Haigh, J. 2021 The Hidden Mathematics of Sport. Portico

Harford, T. 2021 How to Make the World Add up. Ten rules for thinking differently about numbers. The Bridge Street Press

Parker. M. 2020 Humble Pi. A comedy of maths errors. Penguin.

Singh, S. 2013 The Simpsons and their mathematical secrets. Bloomsbury Publishing.

Youtube Clips

Pure

Dividing by zero? https://youtu.be/J2z5uzqxJNU
The Magic of Fibonacci numbers https://youtu.be/SjSHVDfXHQ4

Mechanics

Galileo's gravity experiment https://youtu.be/QyeF- QPSbk
The mighty mathematics of the lever https://youtu.be/YIYEiOPgG1g

Statistics

Types of sampling methods https://youtu.be/pTuj57uXWIk
Standard deviation explained and visualised https://youtu.be/MRqtXL2WX2M

Further Maths (core)

Imaginary numbers are just regular numbers https://youtu.be/sZrOxm5Gszk
Sounds of the Mandelbrot Set https://youtu.be/GiAj9WW1OfQ

Further Maths (decision)

Quick sort with Hungarian Folk Dance https://youtu.be/ywWBy6J5gz8
Visualisation and comparison of sorting algorithms https://youtu.be/ZZuD6iUe3Pc

Channels

Numberphile https://www.youtube.com/user/numberphile
Maths Explained https://www.youtube.com/channel/UCf89GdOFuNUdWv8FISS7lqQ
TLMaths https://www.youtube.com/channel/UCCgGyPD6MYQcHuMIc-Kv-Uw
Vihart https://www.youtube.com/user/Vihart

TASK 1: Seneca Short tasks

Join the Bridging the Gap maths class with code cl6hdh450g on http://Senecalearning.com

There are two assignments to complete. Each one should take less than half an hour.

The first is a refresher of GCSE topics that are relevant for the A-Level course.
The second assignment involves some taster activities for the topics you will learn at A-Level.

TASK 2: Desmos Activities

We will sometimes use Desmos in lessons or for homework. It is helpful for you to familiarise yourself with the system, as well as learn some new maths.

Firstly, complete the Desmos activity on infinite series: https://student.desmos.com/join/mcdwwz You do not need to sign in so use the 'continue without signing in' option.

Secondly, complete the Desmos activity on logarithms: https://student.desmos.com/join/4wteps You do not need to sign in so use the 'continue without signing in' option.

Further Mathematicians (and mathematicians who would like to), there are two more activities for you to do.

The Desmos activity on complex numbers is here: https://student.desmos.com/join/cthedg You do not need to sign in so use the 'continue without signing in' option.

The Desmos activity on matrices is here: https://student.desmos.com/join/vitgu3 You do not need to sign in so use the 'continue without signing in' option.

United Sixth Form
The best in everyone ${ }^{\text {TII }}$

TASK 3: UL A-Level Ready Questions

Have a go at these questions to make sure you are completely ready for the A-Level content. The answers are available through the video links and QR codes, but if you need help, do get in touch.

Manipulating Algebraic Expressions		
$\mathbf{1}$	Expand and Simplify: $(2 x-1)(x+2)(x-3)$	
$\mathbf{2}$	Write $\frac{x^{2}+7 x-18}{2 x^{2}-x-6}$ in the form $\frac{x+a}{b x+c}$ where a, b, and c are integers.	
$\mathbf{3}$	Simplify fully $\frac{3 x+6}{x-4} \div \frac{2 x^{2}+9 x+10}{x^{2}-4 x}$	
Scan the QR code to watch the solution or use the link https://www.youtube.com/watch?v=ilGJpsgcokM\&feature=youtu.be		

Surds

	Simplify (a) $(3 \sqrt{ } 7)^{2}$ (b) $(8+\sqrt{ } 5)(2-\sqrt{ } 5)$	
	Expand and simplify $(\sqrt{ } 7+2)(\sqrt{ } 7-2)$.	
	Simplify $\frac{5-\sqrt{3}}{2+\sqrt{3}}$ giving your answer in the form $a+b \sqrt{ } 3$, where a and b are integers.	
Scan the QR code to watch the solution or use the link https://www.youtube.com/watch?v=oacsMZvJLUc\&feature=youtu.be		

Completing the Square

| 1 | (a) Express $x^{2}+9 x+3$ in the form $(x+a)^{2}+b$
 (b) State the coordinates of the minimum point of the curve $y=x^{2}+9 x+3$ |
| :--- | :--- | :--- |
| $\mathbf{2}$ | $\mathrm{f}(x)=2 x^{2}+8 x+1$
 Find the values of the constants a, b and c such that
 $\mathrm{f}(x)=a(x+b)^{2}+c$ |
| $\mathbf{3}$ | Where a and b are constants
 Given that the minimum point of C has coordinates $(4,-3)$ find the values of a and b. |

Solve Linear \& Quadratic Equations		
1	Solve $4 x^{2}-19 x-5=0$	
2	Solve $5 x^{2}=6 x+3$ Give your solutions correct to 3 significant figures.	
3	Solve $\frac{7}{x+1}-\frac{4}{3 x-2}=1$	
Scan the QR code to watch the solution or use the link https://www.youtube.com/watch?v=jpch-tFae1M\&feature=youtu.be		

Solve Simultaneous Equations

| 1 | Solve the simultaneous equations | |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | | $y=x-2$,
 $y^{2}+x^{2}=10$. |
| $\mathbf{2}$ | Solve the simultaneous equations | |

Inequalities

The Equation of a Straight Line

Parallel and Perpendicular Lines

The line l_{1} has the equation $2 x+3 y+5=0$
The line l_{2} passes through the coordinates $(1,7)$ and $(5,1)$.
1
Determine, giving full reasons for your answer, whether l_{1} and l, are parallel, perpendicular or neither.

The points A and B have coordinates $(-1, k+2)$ and $(2 k-3,8)$ where k is a constant.
Given the gradient of $A B$ is $\frac{1}{3}$
2
(a) Show that $k=4$
(b) Find the equation of the line the passes through A and B.
(c) Find the equation of the perpendicular bisector of A and B.

Give your answer in the form $a x+b y+c=0$

Scan the QR code to watch the solution or use the link
https://www.youtube.com/watch?v=owtikgpal4Q

United Sixth Form
The best in everyone ${ }^{\text {TiT }}$
Part of United Learning

Sine \& Cosine Rules

| $\mathbf{1}$ | In triangle $A B C$, side $A B$ has length 15 cm , side $A C$ has length 12 cm and $\angle B A C=60^{\circ}$
 (a) Find the length of side $B C$.
 (b) Find the area of triangle $A B C$. |
| :--- | :--- | :--- |
| $\mathbf{2}$ | In triangle $P Q R$, side $P Q$ has length 9 cm and side $P R$ has length 10 cm.
 Given the area of $P Q R$ is $30 \mathrm{~cm}^{2}$
 (a) Find the length of side $Q R$.
 (b) Find $\angle P Q R$ |
| In the triangle $A B C, A B=(x+3) \mathrm{cm}, B C=(x+2) \mathrm{cm}, A C=x \mathrm{~cm}$ and angle $B A C=60^{\circ}$ | |
| Find the value of x. | |

TASK 4: Large Data Set

The large data set is used throughout the statistics module of the A-Level mathematics course. It is really helpful if you can familiarise yourself with what it is and what information it contains, before September.

This video is a comprehensive introduction: https://youtu.be/dcF9eKbqRH8

Basic information that you need to know is included on the next page too. As a minimum, try to learn where the different locations are. Can you label a map with their locations?

The Large Data Set

12 October 1987 Hurricane Floyd
1-2 October 2015 Hurricane Joaquin
@sxpmaths

Task 5: Develop your Problem-Solving and Reasoning Skills

Have a go at these senior maths team challenge materials from 2020 and see how you get on with them:

1. The sum of all the digits in the numbers from 1 to 10 is 46 , since $1+2+3+4+5+6+7+8$ $+9+1+0=46$. What is the sum of all the digits in the numbers from 1 to 100 ?

2.

$A C$ is a straight line of length 16 . The point D lies on a semicircular arc that has endpoints A and C. The point B lies on an arc of a quarter circle that also has endpoints A and C. What is the area of the shaded region?

3. Barry commutes to work every day by the same route. He leaves the house at the same time every morning. If his average speed is 30 mph , then he arrives at work three minutes early. If his average speed is 20 mph , he arrives at work three minutes late. What speed, in mph , must he average to arrive at work exactly on time?
4. What is the largest odd factor of 320^{4} ?

5.

A shape is said to be equable if its perimeter, in centimetres, is numerically the same as its area in square centimetres. The trapezium shown is made up of three equable squares and an equable right-angled triangle.

What is the perimeter, in centimetres, of the
 trapezium?
6.

The positive integers m and n satisfy the equation

$$
\left(\frac{m^{2}}{2}\right)^{2}-\left(\frac{n^{2}}{2}\right)^{2}=2020
$$

What is the value of $m+n$?

7.

The midpoints of the three sides of an equilateral triangle are joined up to form a smaller equilateral triangle. A circle is inscribed in the smaller triangle and another circle is circumscribed around the larger triangle.

The ratio of the area of the larger circle to the area of the smaller circle can be written as $x: 1$.

What is the value of x ?

8.

A display board has three coloured lights.
Initially when the lights are turned on, the three coloured lights all flash at the same time. The blue light then flashes every 3 seconds, the green light every 5 seconds and the red light every 7 seconds.

In the fifth, sixth and seventh seconds, there are three consecutive flashes of three different colours, namely, green, blue and red, in that order.

After how many seconds do the lights first flash red, then blue, then green, in three consecutive seconds?

Specify your answer by giving the time, in seconds, when the green flash occurs - this will be a multiple of 5 .

